- 1. G.3 Gliederheizkörper (Designheizkörper) Europa 50 gebogen
 - Eindeutiger Identifizierungscode der Produkttypen gem. EN 442-2 Anhang G*:
- 2. Alle Informationen zur Identifikation befinden sich auf dem Produktetikett und beigefügter Anlage zu dieser Leistungserklärung.
- 3. In einem Bauwerk fest eingebauter Heizkörper aus Metall, gefüllt mit Wasser mit einer Temperatur unter 110°C. Die Erwärmung des Wassers erfolgt über eine externe Wärmequelle.
- 4. Richter+Frenzel GmbH + Co. KG, Leitenäckerweg 6, 97084 Würzburg-Heidingsfeld, Deutschland
- 5. nicht anwendbar
- 6. System 3
- 7. Die notifizierte Stelle WSPL ab mit der Kennnummer 1428 hat die Bewertung und Evaluierung des Produktes nach dem System 3 vorgenommen und mittels Prüfbericht 08.50.KER.377 dokumentiert.
- 8. nicht anwendbar
- Erklärte Leistung

Wesentliche Eigenschaften	Leistung	Harmonisierte technische Spezifikation
Feuerklasse	A 1	EN 442-1:2013
Freisetzung gefährlichter Substanzen	Keine	EU 76/769
Druckdichtigkeit	bestanden	EN 442-1:2013
Max. Betriebstemperatur	110°C	EN 442-1:2013
Max. Betriebsdruck	10 bar	EN 442-1:2013
Druckdichtheit	Bestanden	EN 442-1:2013
Gemessene Wärmeleistung*	Φ 30= 184 bis 773 W Φ 50= 348 bis 1.443 W	EN 442-1:2013
Wärmeleistung bei verschiedenen Betriebsbedingungen *	$Φ=K_T*H_b*\Delta T_{(C0+C1H)}*L_a$	EN 442-1:2013

10. Die Leistung des Produktes gemäß der Nummern 1 und 2 entspricht der erklärten Leistung nach Nummer 9

Verantwortlich für die Erstellung dieser Leistungserklärung ist allein der Hersteller gemäß Nummer 4

Unterzeichnet für den Hersteller und im Namen des Herstellers von

Würzburg, den 09.04.2015

Richter + Frenzel GmbH + Co. KG

Geschäftsführer Richter+Frenzel GmbH & Co. KG

Würzburg, den 09.04.2015

Richter + Frenzel GmbH + Co. KG

Leitung Sortimentsmanagement Heizung/Installation/Lüftung/Metalle

Artikelnummer	Bau- höhe	Bau- länge	Bau- tiefe	Δt50	Δt30	Exponent	Gleichung	Prüfberichtsn- ummer
70 878 25 041 085	804	450	51	348	184	1,2325	$\Phi = K_T * H^b * \Delta T^{(C0+C1H)} * L^a$	08.50.KER.377
70 878 25 041 086	804	599	60	451	240	1,2225	$\Phi = K_T^* H^{b*} \Delta T^{(C0+C1H)} * L^a$	08.50.KER.377
70 878 25 041 088	804	749	70	551	294	1,2124	$\Phi = K_T * H^b * \Delta T^{(C0+C1H)} * L^a$	08.50.KER.377
70 878 25 041 089	804	899	73	650	349	1,2023	$\Phi = K_T * H^b * \Delta T^{(C0+C1H)} * L^a$	08.50.KER.377
70 878 25 041 115	1172	450	51	511	270	1,2321	$\Phi = K_T * H^b * \Delta T^{(C0+C1H)} * L^a$	08.50.KER.377
70 878 25 041 116	1172	599	60	662	352	1,2221	$\Phi = K_T^* H^{b*} \Delta T^{(C0+C1H)} * L^a$	08.50.KER.377
70 878 25 041 118	1172	749	70	810	433	1,2120	$\Phi = K_T * H^b * \Delta T^{(C0+C1H)} * L^a$	08.50.KER.377
70 878 25 041 119	1172	899	73	955	513	1,2020	$\Phi = K_T * H^b * \Delta T^{(C0+C1H)} * L^a$	08.50.KER.377
70 878 25 041 145	1448	450	51	631	334	1,2318	$\Phi = K_T^* H^{b*} \Delta T^{(C0+C1H)} * L^a$	08.50.KER.377
70 878 25 041 146	1448	599	60	817	435	1,2218	$\Phi = K_T^* H^{b*} \Delta T^{(C0+C1H)} * L^a$	08.50.KER.377
70 878 25 041 148	1448	749	70	1000	535	1,2118	$\Phi = K_T^* H^{b*} \Delta T^{(C0+C1H)} * L^a$	08.50.KER.377
70 878 25 041 149	1448	899	73	1179	634	1,2017	$\Phi = K_T * H^b * \Delta T^{(C0+C1H)} * L^a$	08.50.KER.377
70 878 25 041 175	1770	450	51	767	407	1,2256	$\Phi = K_T * H^b * \Delta T^{(C0+C1H)} * L^a$	08.50.KER.377
70 878 25 041 176	1770	599	60	993	530	1,2155	$\Phi = K_T^* H^{b*} \Delta T^{(C0+C1H)} * L^a$	08.50.KER.377
70 878 25 041 178	1770	749	70	1216	652	1,2054	$\Phi = K_T * H^b * \Delta T^{(C0+C1H)} * L^a$	08.50.KER.377
70 878 43 041 179	1770	899	73	1433	773	1,1953	$\Phi = K_T * H^b * \Delta T^{(C0+C1H)} * L^a$	08.50.KER.377

 $K_T = 7,5421$

b = 1,08857

 $c_0 = 1,23941$

 $c_1 = -0.01824$

a = 0,90346